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a b s t r a c t

The random paraxial wave equation is revisited to take into account not only random for-
ward scattering, but also random backscattering. In this paper we are interested in the
transmitted wave fronts and also wave fronts reflected by a strong interface buried in a
random medium. In the weakly heterogeneous regime the reflected and transmitted wave
fields are characterized by reflection and transmission operators that are the solutions of
Itô–Schrödinger diffusion models. These models allow for the computations of the Wigner
distributions and the autocorrelation functions of the reflected and transmitted waves.
They also fully take into account the fact that the waves travel through the same medium
during the propagation to and from the interface, which induces an increase of the beam
radius and of the correlation radius, and also predict the enhanced backscattering effect
in the backscattered direction.

! 2008 Elsevier B.V. All rights reserved.

1. Introduction

Random wave propagation in the paraxial regime is a well-known model that is used in many applications in communi-
cation and imaging [12]. It provides a simple tool for computing the wave transmission through a randommedium by taking
into account random forward scattering and by neglecting random backscattering. This enables one to study a wide range of
phenomena, such as laser beam spreading [5,17] and time reversal in random media [1,3,6]. In many situations of interest,
such as in optical coherence tomography and in geophysical imaging, the quantity of interest is the wave reflected by an
interface located in the random medium. The usual approach found in most papers is to apply the paraxial wave equation
in both directions of propagation and to assume that the statistics of the forward- and backward-propagating waves are
independent [18–20]. However, some authors have already noticed that the correlation of the forward–backward propagat-
ing events can induce modifications of the autocorrelation function of the reflected wave [13,14]. In our paper we analyze the
full statistical distribution of the transmitted and reflected waves. We characterize them by reflection and transmission
operators that are the solutions of the Itô–Schrödinger diffusion models (19) and (33) and which take into account forward
scattering and backscattering by the random medium and backscattering by the interface. These models enable us to com-
pute low- and high-order moments of the reflected and transmitted wave fields. In particular we obtain closed-form expres-
sions for the first-order and second-order statistics (the coherent wave and the autocorrelation function or Wigner
distribution) in several physically relevant regimes.

A particular application of these results is the identification of the regimes in which the independent approach is valid. In
the regime in which the transverse correlation length of the medium is smaller than the beam width, we will show that the
independent approach gives the correct answer as far as the reflected intensity profile and the spatial autocorrelation func-
tion are concerned. However, an important phenomenon not captured by the independent approach, and captured by the
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Itô–Schrödinger diffusion model (33), is the enhanced backscattering or weak localization effect [2,16]: if a quasi-plane wave
is incoming with a given incidence angle, then the mean reflected intensity has a local maximum in the backscattered direc-
tion, which is twice as large as the mean reflected intensity in the other directions. This enhancement can be observed in a
small cone around the backscattered direction, and it can be interpreted as the result of constructive interferences between
reciprocal wave paths. On the other hand, in the regime in which the transverse correlation length of the medium is larger
than the beam width, the independent approach gives a qualitatively wrong prediction. In particular, it underestimates the
beam spreading and it also predicts a correlation radius for the reflected wave smaller than the one that is actually obtained.
In fact, the correlation radius of the reflected wave at the surface can be larger than the correlation radius of the wave at the
reflecting interface, meaning that the wave recovers part of its coherence when it propagates back in the same randommed-
ium. The full Itô–Schrödinger diffusion model that we develop in this paper is needed to explain this phenomenon.

The outline of the paper is as follows: We define the transmission and reflection operators and express the transmitted
and reflected wave fields in terms of these operators in Section 2. In Section 3, respectively, 4, we develop a diffusion for-
mulation for the transmission, respectively, reflection, operator. We analyze the Wigner distributions associated with these
operators in Sections 5 and 6. This analysis is then used to study quantitatively the wave transmission and reflection in Sec-
tions 7 and 8.

2. The transmission and reflection operators

We consider linear acoustic waves propagating in 1þ d spatial dimensions with heterogeneous and randommedium fluc-
tuations. The governing equations are

qðz;xÞ ou
ot

þrp ¼ F;
1

Kðz;xÞ
op
ot

þr % u ¼ 0; ð1Þ

where p is the pressure, u is the velocity, q is the density of the medium, K is the bulk modulus of the medium, and
ðz;xÞ 2 R& Rd are the space coordinates. The source is modeled by the forcing term F. We consider in this paper the situation
in which a random slab occupying the interval z 2 ð0; LÞ is sandwiched between two homogeneous half-spaces. The source, F,
is located outside of the slab, in the halfspace z > L. We shall refer to waves propagating in a direction with a positive z com-
ponent as right-propagating waves. The medium fluctuations in the random slab ð0; LÞ vary relatively rapidly in space while
the ‘‘background” medium is constant. We normalize the background bulk modulus K and density !q in the slab to one, so

that the background speed !c ¼
ffiffiffiffiffiffiffiffiffi
K=!q

q
and impedance Z ¼

ffiffiffiffiffiffiffi
K !q

q
are also equal to one. The medium is assumed to be matched

at the right boundary z ¼ L. We consider a possible mismatch at the boundary z ¼ 0 and denote the medium parameters in
the half-space z < 0 by q0 and K0:

1
Kðz;xÞ

¼
K'1

0 if z 6 0;
1þ emðz=e2;x=eÞ if z 2 ð0; LÞ;
1 if z P L;

8
><

>:
qðz;xÞ ¼

q0 if z 6 0;
1 if z 2 ð0; LÞ;
1 if z P L;

8
><

>:

with e a small parameter. The random field mðz;xÞ models the medium fluctuations and we assume that it is stationary and
that it satisfies strong mixing conditions. We consider a scaling where the central wavelength of the source is of order e2 and
write

Fðt; z; xÞ ¼ f
t
e2 ;

x
e

" #
dðz' z0Þez; ð2Þ

where ez is the unit vector pointing in the z-direction and z0 > L. Note that:

– The source has been normalized so that the Rayleigh length is of order one. The Rayleigh length is the distance from beam
waist where the beam area is doubled by diffraction. For a beamwith carrier wavenumber k0 and radius r0 it is of the order
of k0r20. Here the carrier wavenumber is of order e'2 and the beam radius is of order e. Therefore the Rayleigh length is of
order one.

– The transverse and longitudinal scales of variation of the randommedium, e and e2, respectively, correspond to the scales
of the waves. Therefore the random scattering is sensitive to the full 1þ d-dimensional spectrum of the random fluctu-
ations (or its 1þ d-dimensional autocorrelation function).

– The amplitude e of the relative medium perturbation is chosen so that the random effects are significant after a propaga-
tion distance of order one. Therefore diffractive and random effects have a nontrivial interplay.

In the companion paper [10] we analyze a different regime, in which the randommedium has weak random isotropic fluc-
tuations. The techniques used to analyze the wave reflection and transmission are similar in the two papers, however, lead to
qualitatively different results. In the regime discussed in [10] bulk random backscattering is asymptotically negligible and
the limit Schrödinger system satisfies a conservation of energy relation and describes completely the transmitted and re-
flected waves. Here bulk random backscattering is of order one and small amplitude, but long, incoherent wave fluctuations
are generated. As we will see, the result for the front waves has the form of a dissipative Schrödinger system.

J. Garnier, K. Sølna /Wave Motion 46 (2009) 122–143 123



From now on we re-scale x=e ! x and set

peðt; z;xÞ ¼ pðt; z; exÞ: ð3Þ

Therefore, when we refer to the transversal spatial parameter x in the following, it corresponds to ex in the original
coordinates.

The wave field in the homogeneous half-space z 6 0 satisfies the wave equation with the wave speed c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0=q0

p
. We

introduce the complex amplitudes "ae0 and "be0 of the right- and left-propagating modes:

"ae0ðk; z;xÞ ¼
c0
2

Z
1
e2 p

eðt; z; xÞ þ 1
ik

ope

oz
ðt; z;xÞ

" #
eic0kt=e

2
dt

$ %
e'ikz=e2 ;

"be0ðk; z;xÞ ¼
c0
2

Z
1
e2 p

eðt; z;xÞ ' 1
ik

ope

oz
ðt; z; xÞ

" #
eic0kt=e

2
dt

$ %
eikz=e

2
:

They are defined such that the pressure field in the region z 6 0 can be written as

peðt; z;xÞ ¼ 1
2p

Z
"ae0ðk; z;xÞe

ikz=e2 þ "be0ðk; z;xÞe
'ikz=e2

& '
e'ic0kt=e2 dk;

and they satisfy

o"ae0
oz

ðk; z;xÞeikz=e2 þ o"be0
oz

ðk; z; xÞe'ikz=e2 ¼ 0:

Using (1), we find that they also satisfy the coupled mode equations

o"ae0
oz

¼ i
2k

Dx"ae0 þ e
'2ikz
e2

i
2k

Dx
"be0;

o"be0
oz

¼ 'e
2ikz
e2

i
2k

Dx"ae0 '
i
2k

Dx
"be0;

where Dx is the transverse Laplacian. In the limit e ! 0, the cross terms (proportional to expð(2ikz=e2Þ) average out to zero
and we get the two uncoupled paraxial wave equations

o"ae0
oz

¼ i
2k

Dx"ae0;
o"be0
oz

¼ ' i
2k

Dx
"be0:

Taking into account the fact that there is no source in the half-space z < 0, and therefore no right-going wave, we obtain

peðt; z;xÞ ¼ 1
2p

Z
"be0ðk; z; xÞe

'ikz=e2e'ic0kt=e2 dk; z 6 0: ð4Þ

Similarly, the wave field in the homogeneous regions ½L; z0Þ and ðz0;1Þ has the form

peðt; z; xÞ ¼
1
2p

R
"ae2ðk; z;xÞeikz=e

2e'ikt=e2 dk; z > z0;
1
2p

R
"ae1ðk; z;xÞeikz=e

2 þ "be1ðk; z;xÞe'ikz=e2
& '

e'ikt=e2 dk; z 2 ½L; z0Þ:

8
<

:

Here we have used the fact that there is no source and therefore no left-going wave in the region z > z0 (see Fig. 1). We can
also use the jump conditions across the source position z ¼ z0 to obtain the relations

"be1ðk; z0;xÞ ¼ '1
2
eikz0=e

2"f ðk; xÞ; "ae2ðk; z0;xÞ ' "ae1ðk; z0;xÞ ¼
1
2
e'ikz0=e2"f ðk;xÞ:

By solving the paraxial wave equation for "be1, we obtain the expression for the complex amplitude of the wave incoming in
the random slab at z ¼ L:

"be1ðk; L;xÞ ¼ eikz0=e
2"bincðk;xÞ; "bincðk; xÞ ¼ ' 1

2ð2pÞd

Z
f̂ ðk; jÞe i

2kjjj
2ðL'z0Þþij%x dj; ð5Þ

where the transverse spatial Fourier transform is defined by

f̂ ðk;jÞ ¼
Z

"f ðk;xÞe'ij%x dx: ð6Þ

Fig. 1. Boundary conditions for the modes in the presence of an interface at z ¼ 0, a random slab ð0; LÞ, and a source at z ¼ z0.
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The pressure field in the region z 2 ð0; LÞ can be written as:

peðt; z;xÞ ¼ 1
2p

Z
"aeðk; z; xÞeikz=e2 þ "beðk; z; xÞe'ikz=e2

& '
e'ikt=e2 dk;

where the complex amplitudes "ae and "be of the right- and left-propagating modes are given explicitly by

"aeðk; z;xÞ ¼ 1
2

Z
1
e2 p

eðt; z;xÞ þ 1
ik

ope

oz
ðt; z;xÞ

" #
eikt=e

2
dt

$ %
e'ikz=e2 ;

"beðk; z; xÞ ¼ 1
2

Z
1
e2 p

eðt; z;xÞ ' 1
ik

ope

oz
ðt; z;xÞ

" #
eikt=e

2
dt

$ %
eikz=e

2
:

We obtain the following coupled mode equations for the complex amplitudes "ae and "be:

o"ae

oz
¼ ik

2e m
z
e2 ;x

& '
þ i
2k

Dx

$ %
"ae þ e

'2ikz
e2

ik
2e m

z
e2 ; x

& '
þ i
2k

Dx

$ %
"be; ð7Þ

o"be

oz
¼ 'e

2ikz
e2

ik
2e m

z
e2 ;x

& '
þ i
2k

Dx

$ %
"ae ' ik

2e m
z
e2 ;x

& '
þ i
2k

Dx

$ %
"be: ð8Þ

This system is valid in z 2 ð0; LÞ and it is complemented with the following boundary conditions at z ¼ L and z ¼ 0:

"beðk; z ¼ L;xÞ ¼ eikz0=e
2"bincðk; xÞ; "aeðk; z ¼ 0;xÞ ¼ R0

"beðk; z ¼ 0;xÞ; ð9Þ

where R0 ¼ ðZ0 ' 1Þ=ðZ0 þ 1Þ is the reflection coefficient for the interface at z ¼ 0 and Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
K0q0

p
is the impedance of the

left homogeneous half-space. These boundary conditions are obtained from the continuity relations of the fields
pe and ez % ue at z ¼ L and z ¼ 0, which also provide the expressions for the complex amplitudes of the transmitted field
b̂e0 in the region z < 0 and for the reflected field in the region z > L:

"be0ðk; z ¼ 0; xÞ ¼ T0
"beðk; z ¼ 0;xÞ; "ae1ðk; z ¼ L; xÞ ¼ "aeðk; z ¼ L;xÞ; ð10Þ

where T0 ¼ 2Z1=2
0 =ð1þ Z0Þ is the transmission coefficient for the interface at z ¼ 0. If there is no impedance contrast Z0 ¼ 1,

then T0 ¼ 1 and R0 ¼ 0 and the second boundary condition in (9) reads "aeðk; z ¼ 0;xÞ ¼ 0. This is the radiation condition
expressing the fact that there is no wave incoming from '1. If there is a large impedance contrast Z0 * 1 or Z0 + 1, then
T0 + 1 and the reflection coefficient is close to one in absolute value. In particular, if Z0 + 1, then R0 ’ '1 and the second
boundary condition in (9) is equivalent to the Dirichlet (reflecting) boundary condition peðt; z ¼ 0;xÞ ¼ 0.

We nowmake use of an invariant imbedding step and introduce the transmission and reflection operators. First we define
the lateral Fourier modes

âeðk; z;jÞ ¼
Z

"aeðk; z; xÞe'ij%x dx; b̂eðk; z;jÞ ¼
Z

"beðk; z; xÞe'ij%x dx; ð11Þ

and make the ansatz

âeðk; z;jÞ ¼
Z
bReðk; z;j; j0Þb̂eðk; z;j0Þdj0; b̂e0ðk;jÞ ¼

Z
bT eðk; z;j; j0Þb̂eðk; z;j0Þdj0: ð12Þ

Using the mode coupling equations (7) and (8) we find

d
dz
bReðk; z;j;j0Þ ¼ e'

2ikz
e2 bLeðk; z;j; j0Þ þ e

2ikz
e2

Z Z
bReðk; z; j;j1ÞbLeðk; z; j1; j2Þ bReðk; z;j2;j

0Þdj1 dj2

þ
Z
bLeðk; z; j;j1Þ bReðk; z; j1; j

0Þ þ bReðk; z;j; j1ÞbLeðk; z;j1;j
0Þdj1; ð13Þ

d
dz
bT eðk; z;j; j0Þ ¼

Z
bT eðk; z;j;j1ÞbLeðk; z;j1;j

0Þdj1

þ e
2ikz
e2

Z Z
bT eðk; z;j;j1ÞbLeðk; z; j1; j2Þ bReðk; z;j2;j

0Þdj1 dj2; ð14Þ

where we have defined

bLe k; z;j1;j2ð Þ ¼ ' i
2k

jj1j2dðj1 ' j2Þ þ
ik

e2ð2pÞd
m̂ z
e2 ; j1 ' j2

& '
; ð15Þ

with m̂ðz; jÞ the partial Fourier transform of mðz;xÞ defined as in (6). This system is complemented with the initial conditions
at z ¼ 0:

bReðk; z ¼ 0;j; j0Þ ¼ R0dðj' j0Þ; bT eðk; z ¼ 0; j;j0Þ ¼ T0dðj' j0Þ:
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The transmission and reflection operators evaluated at z ¼ L carry all the relevant information about the random medium
from the point of view of the transmitted and reflected waves, which are our main quantities of interest.

Our objective in the next sections is to characterize the transmitted wave field

petrðs; xÞ ¼ peðz0 þ e2s; z ¼ 0';xÞ ¼ 1
2p

Z Z
b̂e0ðk;0;j

0Þdj0eiðj%x'kz0=e2'ksÞ djdk

¼ 1
ð2pÞdþ1

Z Z Z
bT eðk; L;j; j0Þb̂incðk;j0Þdj0eiðj%x'ksÞ djdk; ð16Þ

and the reflected wave field

perefðs; xÞ ¼ peðz0 þ Lþ e2s; z ¼ Lþ;xÞ ¼ 1
2p

Z Z
âe1ðk; L; j

0Þdj0eiðj%x'kðz0þLÞ=e2'ksÞ djdk

¼ 1
ð2pÞdþ1

Z Z Z
bReðk; L;j; j0Þb̂incðk;j0Þdj0eiðj%x'ksÞ djdk: ð17Þ

Note that these wave fields are observed on the time scale of the source and around their respective expected arrival times
(z0 for the transmitted wave, and z0 þ L for the reflected wave, which corresponds to the sum of the travel time from the
source z0 to the interface 0 and the travel time from 0 to L).

3. Random Schrödinger model for the transmission operator

We consider the transmitted field petr defined by (16) and use diffusion approximation theorems to identify a random
Schrödinger model. The main result is the following.

Proposition 1. The processes petrðs;xÞ converge in distribution in the space C0ðR; L2wðRdÞÞ \ L2wðR; L
2
wðRdÞÞ to the limit process

ptrðs; xÞ ¼
1
2p

Z Z
"T ðk; L;x;x0Þ"bincðk; x0Þdx0e'iks dk: ð18Þ

Here C0ðR; L2wðR
dÞÞ is the space of continuous functions in s with values in L2wðR

dÞ equipped with the weak topology and
L2wðR; L

2
wðR

dÞÞ ¼ L2wðR& RdÞ. The operators "T ðk; z;x;x0Þ are the solutions of the following Itô–Schrödinger diffusion model:

d"T ðk; z;x;x0Þ ¼ i
2k

Dx0
"T ðk; z; x; x0Þdz' k2C2kð0Þ

8
"T ðk; z; x; x0Þdzþ ik

2
"T ðk; z;x;x0Þ , dBðz;x0Þ; ð19Þ

starting from "T ðk; 0;x;x0Þ ¼ T0dðx' x0Þ. Here , stands for the Stratonovich stochastic integral, Bðz;xÞ is a Brownian field with
covariance

E½Bðz1;x1ÞBðz2;x2Þ- ¼ minfz1; z2g
Z 1

'1
Cðs;x1 ' x2Þds; ð20Þ

and we have defined

Cðz;xÞ ¼ E½mðz0 þ z;x0 þ xÞmðz0;x0Þ-; ð21Þ

CkðxÞ ¼
Z 1

'1
Cðz;xÞe'ikz dz: ð22Þ

The moments of the finite-dimensional distributions also converge:

E½petrðs1;x1Þm1 % % % petrðsq;xqÞmq - !e!0
E½ptrðs1;x1Þm1 % % %ptrðsq;xqÞmq -; ð23Þ

for any q 2 N, s1; . . . ; sq 2 R, x1; . . . ;xq 2 Rd, and m1; . . . ;mq 2 N.

The existence and uniqueness problem for the solution of the Itô–Schrödinger model (19) was addressed in [4]. The end of
the section is devoted to the proof of this proposition. We shall use a technique similar to the one presented in [9] in the case
of randomly layered media. The idea is to study the convergence of a family of moments of the operator bT e that determines
the distribution of the transmitted field. The operator bT e itself does not converge to bT (the Fourier transform of "T ), but some
specific moments of bT e (expectations of products of components with distinct frequencies k) converge to those of bT , and this
is what is needed.

Step 1. A priori estimates. From (7) and (8) we can check that, for any k, the integral
R
j"aeðk; z;xÞj2 ' j"beðk; z;xÞj2 dx is con-

served in z. Applying this conservation relation at z ¼ 0 and z ¼ L, and taking into account the boundary conditions (9), we
obtain

Z
j"aeðk; L;xÞj2dxþ ð1' R2

0Þ
Z

j"beðk; 0;xÞj2dx ¼
Z

j"bincðk;xÞj2 dx:
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Using now (10) and the identity R2
0 þ T2

0 ¼ 1 we get
Z

j"ae1ðk; L;xÞj
2 dxþ

Z
j"be0ðk; 0;xÞj

2 dx ¼
Z

j"bincðk;xÞj2 dx; ð24Þ

which expresses the fact that the power of the incoming wave is fully recovered by the transmitted and reflected waves.
Integrating in k and using Parseval’s equality gives the total energy conservation relation

Z Z
jperefðs;xÞj

2 dxdsþ
Z Z

jpetrðs;xÞj
2 dxds ¼ 1

2p

Z Z
j"bincðk; xÞj2 dxdk: ð25Þ

We first state a priori estimates for our quantities of interest.

Lemma 1. There exists C > 0 such that, uniformly in e and in s0; s1,
Z

jpetrðs0;xÞj
2 dx 6 C and

Z
jpetrðs1; xÞ ' petrðs0;xÞj

2 dx 6 Cjs1 ' s0j: ð26Þ

Proof. Using the Sobolev’s embedding L1ðRÞ . H1ðRÞ, there exists a constant Csob such that, for any x, supsjpetrðs;xÞj
2 6

Csobkpetrð%;xÞk
2
H1ðRÞ. Then, using Parseval’s equality, we obtain

sup
s

jpetrðs;xÞj
2 6 Csob

2p

Z
ð1þ k2Þj"beðk;0; xÞj2 dk:

Integrating in x and using the conservation equation (24) yields the first result of the Lemma:

sup
s

Z
jpetrðs; xÞj

2dx 6
Z

sup
s

jpetrðs;xÞj
2 dx 6 Csob

2p

Z Z
ð1þ k2Þj"bincðk;xÞj2 dxdk:

By Cauchy–Schwarz inequality, we have

jpetrðs1;xÞ ' petrðs0;xÞj
2 ¼

Z s1

s0

opetr
os

ðs;xÞds
((((

((((
2

6
Z s1

s0

ds
Z s1

s0

opetr
os

ðs;xÞ
((((

((((
2

ds 6 js1 ' s0j
Z

opetr
os

ðs; xÞ
((((

((((
2

ds:

The integral in x of the last term of the inequality can be bounded uniformly as above, which completes the proof. We remark
that, in fact, Sobolev’s embedding gives that C1=2ðRÞ . H1ðRÞ providing a result on smoothness in time. h

Step 2. The moments of the finite-dimensional distribution of petrðs;xÞ converge to those of ptrðs;xÞ. Let us fix times s1; . . . ; sq,
positions x1; . . . ;xq, and integers m1; . . . ;mq. The general moment (23) of petrðs;xÞ can be expressed as the multiple integral

E½petrðs1;x1Þm1 % % %petrðsq;xqÞmq - ¼ 1
ð2pÞNðdþ1Þ

Z
. . .

Z Yq

h¼1

Ymh

j¼1

dj0
h;j djh;j dkh;j

Y

h;j

b̂incðkh;j;j0
h;jÞe

iðjh;j %xh'kh;jshÞ
& '

E
Y

h;j

bT eðkh;j;L;jh;j;j
0
h;jÞ

" #

;

for N ¼
Pq

h¼1mh. Therefore, the convergence of the general moment of the transmitted wave field will follow from the con-
vergence of the following specific moments of the transmission operator

E
YN

j¼1

bT eðkj; L; jj; j
0
jÞ

" #
: ð27Þ

We call these moments ‘‘specific” because we restrict our attention to the case in which the frequencies kj are all distinct. In
Appendix A we use diffusion approximation theorems to deduce that we have

lim
e!0

E
Y

j

bT eðkj; L;jj;j
0
jÞ

" #
¼ E

Y

j

bT ðkj; L;jj;j
0
jÞ

" #
;

when the right-hand side expectation is taken with respect to the following Itô–Schrödinger model for the transmission
operator:

d bT ðk; z;j; j0Þ ¼ ' k2ðC0ð0Þ þ C2kð0ÞÞ
8

bT ðk; z;j;j0Þdz' ijj0j2

2k
bT ðk; z;j; j0Þdzþ ik

2ð2pÞd

Z
bT ðk; z; j;j1ÞdbBðz; j1 ' j0Þdj1;

ð28Þ
starting from bT ðk;0; j; j0Þ ¼ T0dðj' j0Þ. Here we have used the notations (21) and (22) and the Brownian field bB is the partial
Fourier transform of the field B so that it has the following operator-valued spatial covariance

E½bBðz1;j1ÞbBðz2; j2Þ- ¼ minfz1; z2gð2pÞdbC0ðj1Þdðj1 þ j2Þ; ð29Þ

bCkðjÞ ¼
Z 1

'1

Z

Rd
Cðz; xÞe'ikz'ij%x dxdz: ð30Þ

J. Garnier, K. Sølna /Wave Motion 46 (2009) 122–143 127



Consider next the transmission operator in (28) in the original spatial variables:

"T ðk; z;x;x0Þ ¼ 1
ð2pÞd

Z
eiðj%x'j0 %x0 Þ bT ðk; z;j;j0Þdjdj0: ð31Þ

Then we find that this operator is weakly characterized by the Itô–Schrödinger diffusion model (19). This proves therefore
the last statement of the Proposition (the convergence of the moments).

Step 3. Convergence of petr to ptr in C0ðR; L2wðR
dÞÞ \ L2wðR; L

2
wðR

dÞÞ. Lemma 1 shows that the process petr is tight in C0ðR; L2wðR
dÞÞ.

Moreover, the first estimate also shows that, for any function / in L2ðRdÞ the random processes

Xe
/ðsÞ ¼

Z
petrðs; xÞ/ðxÞdx

are uniformly bounded. Therefore, the finite-dimensional distributions are characterized by the moments of the form

E Xe
/1
ðs1Þm1 % % %Xe

/q
ðsqÞmq

h i
;

where q 2 N, m1; . . . ;mq 2 N, /1; . . . ;/q 2 L2ðRdÞ. These moments can be written as multiple integrals

E Xe
/1
ðs1Þm1 % % %Xe

/q
ðsqÞmq

h i
¼ 1

ð2pÞNðdþ1Þ

Z
. . .

Z Y

h;j

djh;j dj0
h;j dkh;j

&
Y

h;j

b̂incðkh;j;j0
h;jÞ/̂hðjh;jÞe'ikh;jsh

& '
E
Y

h;j

"T eðkh;j; L;jh;j;j
0
h;jÞ

" #
;

for N ¼
Pq

h¼1mh, where only the specific moments of the form (27) appear (i.e., moments of products of the transmission
operator at distinct k). The convergence of these specific moments therefore implies the convergence of the finite-dimen-
sional distributions, hence the weak convergence in C0ðR; L2wðR

dÞÞ. Furthermore, the estimate (25) shows that the processes
are tight in L2wðR; L

2
wðR

dÞÞ. This proves the first statement of the proposition and completes its proof. h

4. Generalized Schrödinger model for the reflection operator

In this section we shift our attention to the reflected wave peref defined by (17). We again use diffusion approximation the-
orems to identify a coupled random Schrödinger model. By an argument as presented in Section 3 regarding the transmitted
field we find the following result.

Proposition 2. The processes peref ðs;xÞ converge in distribution in the space C0ðR; L2wðRdÞÞ \ L2wðR; L
2
wðRdÞÞ to the limit process

prefðs; xÞ ¼
1
2p

Z Z
"Rðk; L;x;x0Þ"bincðk; x0Þdx0e'iks dk: ð32Þ

The operators "Rðk; z;x;x0Þ are the solutions of the following Itô–Schrödinger diffusion model

d "Rðk; z;x;x0Þ ¼
i
2k

Dx þ Dx0ð Þ "Rðk; z; x; x0Þdz'
k2C2kð0Þ

4
"Rðk; z; x; x0Þdzþ

ik
2

"Rðk; z;x;x0Þ , dBðz;xÞ þ dBðz;x0Þð Þ; ð33Þ

starting from "Rðk;0;x;x0Þ ¼ R0dðx' x0Þ. The moments of the finite-dimensional distributions also converge

E½perefðs1;x1Þm1 % % %perefðsq;xqÞmq - !e!0
E½prefðs1;x1Þm1 % % %prefðsq;xqÞmq -; ð34Þ

for any q 2 N, s1; . . . ; sq 2 R, x1; . . . ;xq 2 Rd, and m1; . . . ;mq 2 N.

Proof. The proof follows the same line as the one of Proposition 1 for the transmitted field. In particular, the moments (34)
are characterized by the specific moments of the reflection operator

E
YN

j¼1

bReðkj; L; jj; j
0
jÞ

" #
; ð35Þ

for different frequencies kj. In Appendix B we use diffusion approximation theorems to show that indeed

lim
e!0

E
Y

j

bReðkj; L;jj;j
0
jÞ

" #
¼ E

Y

j

bRðkj; L;jj;j
0
jÞ

" #
;

when the right-hand side expectation is taken with respect to the following coupled Itô–Schrödinger model for the reflection
operator:
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d bRðk; z;j;j0Þ ¼ ' iðjjj2 þ jj0j2Þ
2k

bRðk; z; j;j0Þdz' k2ðC0ð0Þ þ C2kð0ÞÞ
4

bRðk; z; j;j0Þdz

' k2

4ð2pÞd

Z
bC0ðj1Þ bRðk; z;j' j1;j

0 ' j1Þdj1 dz

þ ik

2ð2pÞd

Z
bRðk; z; j;j1ÞdbBðz;j1 ' j0Þ þ bRðk; z;j1;j

0ÞdbBðz; j' j1Þ
& '

dj1; ð36Þ

starting from bRðk;0; j; j0Þ ¼ R0dðj' j0Þ. Here bB is the Brownian field whose distribution is characterized by the covariance
(29). We consider next the reflection operator in the original spatial variables:

"Rðk; z;x;x0Þ ¼ 1
ð2pÞd

Z
eiðj%x'j0 %x0Þ bRðk; z;j;j0Þdjdj0; ð37Þ

and find that this operator is weakly characterized by the diffusion model (33). h

Regarding the above results we remark first that the limit problems for the reflection operator and for the transmission
operator are linear. In fact, the nonlinear terms in (13) and (14) are associated with random backscattering. In the asymptotic
regime we are considering, and as far as the reflected wave front peref is concerned, the nonlinear terms in (13) only manifest
themselves via the damping term involving C2kð0Þ in (33). Similarly for the transmitted wave front petr, the nonlinear terms in
(14) only manifest themselves via the damping term involving C2kð0Þ in (19).

We remark second that, in Propositions 1 and 2, we cannot expect a stronger convergence result. This remark is motivated
by the observation that the limit processes ptr and pref defined by (18) and (32) do not satisfy the energy conservation equa-
tion (25). Indeed we have

Z Z
E½jprefðs;xÞj

2-dxdsþ
Z Z

E½jptrðs; xÞj
2-dxds ¼ 1

2p

Z Z
j"bincðk;xÞj2 R2

0e
'C2k ð0Þk

2L
2 þ T2

0e
'C2k ð0Þk

2L
4

" #
dxdk

<
1
2p

Z Z
j"bincðk;xÞj2 dxdk:

The damping factor expð'C2kð0Þk
2L=2Þ represents the leading-order effect of randomly backscattered energy described by

the nonlinear terms in Eq. (13) for the reflection operator. Similarly the damping factor expð'C2kð0Þk
2L=4Þ represents the

leading-order effect of randomly backscattered energy described by the nonlinear terms in Eq. (14) for the transmission
operator. The term C2kð0Þ in the damping factor is the spectrum of the medium fluctuations evaluated at the wave vector
difference for forward and backward traveling waves and represents intensity of backscattering. We remark finally that this
backscattered energy spreads out as an incoherent long and small-amplitude coda and will not accumulate again in the wave
front that we are analyzing, this is the mechanism that gives damping in our representation.

5. The Wigner distribution for the transmitted wave

In order to identify different propagation regimes, we will write the Wigner distribution in a dimensionless form. First we
introduce the dimensionless autocorrelation function C of the fluctuations of the random medium

Cðz;xÞ ¼ r2C
z
lz
;
x
lx

" #
;

where r is the standard deviation of the fluctuations of the random medium, lz (respectively, lx) is the longitudinal (respec-
tively, transverse) correlation radius of the medium. In this situation we have

C0ðxÞ ¼ r2lzC0
x
lx

" #
; bC0ðuÞ ¼ r2lzl

d
x
bC0ðulxÞ:

We assume next that the power spectral density bC0ðuÞ decays fast enough so that
R
juj2bC0ðuÞdu is finite. This means that the

autocorrelation function C0ðxÞ is at least twice differentiable at x ¼ 0, which corresponds to a smooth random medium. For
simplicity, we assume also that the random fluctuations are isotropic in the transverse directions, in the sense that the auto-
correlation function C0ðxÞ depends only on jxj.

We now consider two frequencies k1 and k2 in a frequency band centered at k and we define the two-frequency Wigner
distribution of the transmission operator by

WT
k1 ;k2

ðz;x;x0;q;q0Þ ¼ e
C2k1

ð0Þk2
1
þC2k2

ð0Þk2
2

8 z
Z Z

e'iðq%yþq0 %y0ÞE "T k1; z;

ffiffiffi
k

p
ffiffiffiffiffi
k1

p ðxþ y
2
Þ;

ffiffiffi
k

p
ffiffiffiffiffi
k1

p x0 þ y0

2

" # !"

& "T k2; z;

ffiffiffi
k

p
ffiffiffiffiffi
k2

p ðx' y
2
Þ;

ffiffiffi
k

p
ffiffiffiffiffi
k2

p x0 ' y0

2

" # !#
dydy0: ð38Þ
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Note that we have taken out the damping terms proportional to C2kj ð0Þ in this definition. Using the stochastic equation (19)
and Itô’s formula, we find that the Wigner distribution satisfies the closed system

oWT
k1 ;k2

oz
þ q0

k
% rx0WT

k1 ;k2
¼ ' C0ð0Þðk21 þ k22Þ

8
WT

k1 ;k2

þ k1k2
4ð2pÞd

Z
bC0ðuÞWT

k1 ;k2
z;x;x0;q;q0 ' 1

2

ffiffiffi
k

p
ffiffiffiffiffi
k1

p þ
ffiffiffi
k

p
ffiffiffiffiffi
k2

p
 !

u

 !
e
iu%x0

ffiffi
k

p
ffiffiffi
k1

p '
ffiffi
k

p
ffiffiffi
k2

p
" #

du; ð39Þ

starting from WT
k1 ;k2

ðz ¼ 0;x;x0;q;q0Þ ¼ T2
0ð4p2k1k2=k

2Þd=2dðx' x0Þdðqþ q0Þ. It is possible to solve this system and to find an
integral representation for the two-frequency Wigner distribution using the approach of [5]. However, we aim at focusing
on spatial aspects in the next sections, and we shall simplify the algebra by assuming that the bandwidth B of the incoming
wave is small. To describe this regime it is convenient to introduce

b ¼ r2k20Llz
4

; a ¼ L

k0l
2
x

; a0 ¼ L
k0r20

; ð40Þ

where k0 is the carrier wavenumber, r0 is the initial beam width and where b describes the intensity of forward scattering,
while a and a0 represent the intensities of lateral scattering on, respectively, the scales of the medium variations and the
input beam. We assume that the bandwidth B of the incoming wave (with carrier wavenumber k0) is small in the sense that

B + Bc; Bc :¼ k0 minð1;a'1;a'1
0 ;b'1Þ: ð41Þ

If k1; k2 lie in the spectrum of the incoming wave, we then find that the two-frequency Wigner distribution WT
k1 ;k2

can be
approximated by the simplified Wigner distribution WT that depends only on the carrier wavenumber k0 and not on the
lag k1 ' k2 and that satisfies

oWT

oz
þ q0

k0
% rx0WT ¼ k20

4ð2pÞd

Z
bC0ðuÞ WT z;x;x0;q;q0 ' uð Þ 'WT z;x;x0;q;q0ð Þ

h i
du; ð42Þ

starting from WTðz ¼ 0;x;x0;q;q0Þ ¼ ð2pÞdT2
0dðx' x0Þdðqþ q0Þ. By taking a Fourier transform in q0 and x0, we obtain a trans-

port equation that can be integrated and we find the following integral representation for WT:

WTðz;x;x0;q;q0Þ ¼ T2
0

ð2pÞd

Z Z
e'iðq0þqÞ%a'iðx0'xþ q

k0
zÞ%be

k2
0
4

R z

0
C0ðaþ b

k0
z0Þ'C0ð0Þdz

0

dadb: ð43Þ

5.1. Slow transverse variations

We want to analyze the regime in which the transverse correlation length lx of the medium is larger than the beam width
r0. We introduce normalized coordinates and write the Wigner distribution in the form

WTðz;x;x0;q;q0Þ ¼ T2
0ð2pÞ

dWT z
L
;
x
r0

;
x0

r0
;qr0;q0r0

" #
;

where WT satisfies

oWT

of
þ al2x

r20
q0 % rx0W

T ¼ b

ð2pÞd

Z
bC0ðuÞ WT z;x;x0;q;q0 ' r0

lx
u

" #
'WT z;x;x0;q;q0ð Þ

$ %
du; ð44Þ

starting from WTðf ¼ 0;x;x0;q;q0Þ ¼ dðx' x0Þdðqþ q0Þ. We assume in this section that

(1) r0 + lx, which means that the transverse correlation length of the medium is large,
(2) k0r20 / L, which means that diffractive effects are of order one.

These conditions are equivalent to a0 ¼ al2x=r20 / 1 and a + 1. Therefore, we can expand the integral of the right-hand side of
(44) with respect to the small parameter r0=lx and we obtain the simplified system

oWT

of
þ al2x

r20
q0 % rx0W

T ¼ br20
2l2x

DDq0WT ; ð45Þ

where

D ¼ 1
dð2pÞd

Z
bC0ðuÞjuj2 du ¼ '1

d
DxC0ð0Þ: ð46Þ
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Here we have used the fact that
R
ubCðuÞdu ¼ 0 since bCðuÞ is an even function. In the original variables, the Wigner distribu-

tion WT solves

oWT

oz
þ q0

k0
% rx0WT ¼ k20D

8
Dq0WT ; ð47Þ

where

D ¼ 1
dð2pÞd

Z
bC0ðuÞjuj2 du ¼ '1

d
DxC0ð0Þ ¼

r2lz
l2x

D;

and it has the form

WTðz;x;x0;q;q0Þ ¼ T2
0

192
D2k20z4

 !d=2

e
'2jqþq0 j2

k2
0
Dz e'

24jx'x0'q'q0
2k0

zj2

Dz3 : ð48Þ

This solution is obtained by solving the advection-diffusion equation (47) after Fourier transforming in q0 and x0 (which
gives a transport equation). It is also possible to compute the limit of the integral representation (43) directly. The Wigner
distribution contains all the relevant information needed to understand the main properties of the transmitted wave, as we
shall see in Section 7.

5.2. Rapid transverse variations

We want now to analyze the regime in which the transverse correlation length lx of the medium is smaller than the beam
width r0. More exactly, we assume in this section that

(1) r0 * lx, which means that the transverse correlation length of the medium is small,
(2) k0r0lx / L, which means that diffractive effects are of order one. Note that we have not yet established the fact that

diffraction plays a role for a propagation distance L of the order of k0r0lx which is smaller than the usual Rayleigh
length k0r20. However, this is a well-known result [7,12], and we shall deduce it here in the analytic framework that
we have set forth.

The two conditions r0 * lx and k0r0lx / L are equivalent to a * 1 and alx=r0 / 1.
The Wigner distribution can now be written in the form

WTðz;x;x0;q;q0Þ ¼ T2
0ð2pÞ

dWT z
L
;
x
r0

;
x0

r0
;qlx;q0lx

" #
;

where WT satisfies

oWT

of
þ alx

r0
q0 % rx0W

T ¼ b

ð2pÞd

Z
bC0ðuÞ WT z; x; x0;q;q0 ' uð Þ 'WT z;x;x0;q;q0ð Þ

) *
du; ð49Þ

starting from WTðf ¼ 0;x;x0;q;q0Þ ¼ dðx' x0Þdðqþ q0Þ. It is clear from this equation that diffractive effects (characterized by
the term q0 % rx0 ) are of order one in this regime, in which alxr0 / 1. We can also consider the integral representation (43) and
write it in dimensionless form

WTðf;x;x0;q;q0Þ ¼ 1
ð4p2aÞd

Z Z
e
'iðq0þqÞ%a'i

r0
alx

ðx0'xÞþqf

& '
%b
eb
R f

0
C0ðaþbf0 Þ'C0ð0Þ df0 dadb: ð50Þ

If additionally, we assume that b * 1, then we obtain an expression which, in the original variables, is exactly (48).
Remember that (48) was obtained in the small-a regime. The fact that the large-b behavior is independent of a can
be seen directly from (43) and (50). Using the fact that the structure function a#C0ð0Þ ' C0ðaÞ is smooth and attains
its minimum at the origin, we find that when b is large, the main contribution to the exponential integral is concen-
trated at small aþ bz=k0:

e
k2
0
4

R z

0
C0ðaþ b

k0
z0Þ'C0ð0Þ dz

0

’ e
'
k2
0
D

8

R z

0
aþ b

k0
z0

(((
(((
2

dz0

;

and the integration gives (48).

J. Garnier, K. Sølna /Wave Motion 46 (2009) 122–143 131



6. The Wigner distribution for the reflected wave

We define the two-frequency Wigner distribution of the reflection operator by

WR
k1 ;k2

ðz;x;x0;q;q0Þ ¼ e
C2k1

ð0Þk2
1
þC2k2

ð0Þk2
2

4 z
Z Z

e'iðq%yþq0 %y0ÞE "R k1; z;

ffiffiffi
k

p
ffiffiffiffiffi
k1

p ðxþ y
2
Þ;

ffiffiffi
k

p
ffiffiffiffiffi
k1

p x0 þ y0

2

" # !"

& "R k2; z;

ffiffiffi
k

p
ffiffiffiffiffi
k2

p ðx' y
2
Þ;

ffiffiffi
k

p
ffiffiffiffiffi
k2

p x0 ' y0

2

" # !#

dydy0: ð51Þ

If the bandwidth of the incoming wave satisfies (41) and if k1; k2 lie in the spectrum of the wave, then we find by
using (33) that the two-frequency Wigner distribution WR

k1 ;k2
can be approximated by the simplified Wigner distribu-

tion WR that depends only on the carrier wavenumber k0 and not on the lag k1 ' k2 and that satisfies the closed
system

oWR

oz
þ q
k0

% rxWR þ q0

k0
% rx0WR ¼ k20

4ð2pÞd

Z
bC0ðuÞ WR z; x; x0;q' u;q0ð Þ þWR z;x;x0;q;q0 ' uð Þ

h

þ2WR z; x; x0;q' 1
2
u;q0 ' 1

2
u

" #
cos u % ðx' x0Þð Þ

'2WR z; x; x0;q' 1
2
u;q0 þ 1

2
u

" #
cos u % ðx' x0Þð Þ ' 2WR z;x;x0;q;q0ð Þ

%
du;

starting from WRðz ¼ 0;x;x0;q;q0Þ ¼ R2
0ð2pÞ

ddðx' x0Þdðqþ q0Þ.

6.1. Slow transverse variations

In the regime in which the transverse correlation length of the medium is larger than the beam width
ðr0 + lx and k0r20 / LÞ, as in Section 5.1, we obtain the simplified system

oWR

oz
þ

q
k0

% rxWR þ
q0

k0
% rx0WR ¼

k20D
8

ðrq þrq0 Þ % ðrq þrq0 ÞWR: ð52Þ

This system can be integrated and the solution reads

WRðz;x;x0;q;q0Þ ¼ R2
0

2p
k20Dz

 !d=2

d x' x0 ' q' q0

k0
z

" #
e
'jqþq0 j2

2k2
0
Dz : ð53Þ

6.2. Rapid transverse variations

The regime in which r0 * lx and k0r0lx / L, as in Section 5.2, is more delicate and more interesting to study because WR

exhibits a multi-scale behavior. So we shall first cast the Wigner distribution in a suitable dimensionless form. We consider
the following Fourier transform VR of the Wigner distribution WR:

WRðz;x;x0;q;q0Þ ¼ 1
ð2pÞd

Z
VR z;

qþ q0

2
;q' q0; c

" #
eic%ðx

0'xÞ dc;

which we introduce because the stationary maps that we will identify in Lemma 2 in the asymptotic regime a ! 1 have
simple representations in this new frame. Note also that this ansatz incorporates the fact that WR does not depend on
xþ x0, only on x' x0. The Fourier-transformed operator VRðz; a;b; cÞ has the form

VRðz;a;b; cÞ ¼ R2
0ðplxÞ

de
iz
k0
b%c
VR z

L
;alx;blx; clx

& '
;

where VR is the solution of the dimensionless system

oVR

of
¼ b

ð2pÞd

Z
bC0ðuÞ VR f;q' 1

2
u; r' u; s

" #
e'ias%uf þ VR f;q' 1

2
u; rþ u; s

" #
eias%uf þ VR f;q' 1

2
u; r; s' u

" #
e'iar%uf

$

þVR f;q' 1
2
u; r; sþ u

" #
eiar%uf ' VR f;q' 1

2
u; r' u; sþ u

" #
eia½ðr'sÞ%u'juj2 -f

'VR f;q' 1
2
u; r' u; s' u

" #
e'ia½ðrþsÞ%uþjuj2 -f ' 2VR f;q; r; sð Þ

%
du; ð54Þ
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starting from VRðf;q; r; sÞ ¼ dðqÞ. The parameters a and b are given by (40). The regime a! 1 corresponds to rapid trans-
verse fluctuations of the random medium. In (54) this regime gives rise to rapid phases. The following proposition describes
the asymptotic behavior of VR as a ! 1. The presence of singular layers at r ¼ 0 and at s ¼ 0 requires particular attention.

Lemma 2.

1. For any r–0, s–0:

VRðf;q; r; sÞ !a!1
dðqÞe'2bC0ð0Þf: ð55Þ

2. For any s–0 we have VRðf;q; ra ; sÞ !a!1
VR

r ðf;qÞ where VR
r ðf;qÞ is solution of

oVR
r

of
¼ 2b

ð2pÞd

Z
bC0ðuÞ VR

r f;q' 1
2
u

" #
cosðr % ufÞ ' VR

r ðf;qÞ
$ %

du; ð56Þ

and is given explicitly by

VR
r ðf;qÞ ¼

1
ð2pÞd

Z
e'iq%ueb

R f

'f
C0

u
2þrf0ð Þ'C0ð0Þdf0 du: ð57Þ

Similarly, for any r–0 we have VRðf;q; r; saÞ !a!1
VR

s ðf;qÞ.
3. For any r and s we have

VR f;q;
r
a ;

s
a

& '
!a!1

VR
r ðf;qÞ þ VR

s ðf;qÞ ' dðqÞe'2bC0ð0Þf: ð58Þ

Proof. In case (1), the rapid phases cancel the contributions of all but the last term in (54), and we get oVR

of ¼ '2bC0ð0ÞVR,
which gives (55).

In case (2), we obtain in the limit a! 1 the simplified system

oVR
r

of
¼ b

ð2pÞd

Z
bC0ðuÞ VR

r f;q' 1
2
u; s' u

" #
e'ir%uf þ VR

r f;q' 1
2
u; sþ u

" #
eir%uf ' 2VR

r ðf;q; sÞ
$ %

du:

We then Fourier transforms this equation in q and s, and obtain that the solution does not depend on s, that it satisfies (56),
and that it is given by (57).

In case (3) we obtain the simplified system for VR
r;sðf;qÞ ¼ lima!1VR f;q; ra ;

s
a

+ ,
:

oVR
r;s

of
¼ 2b

ð2pÞd

Z
bC0ðuÞ VR

s f;q' 1
2
u

" #
cosðs % ufÞ þ VR

r f;q' 1
2
u

" #
cosðr % ufÞ ' VR

r;sðf;qÞ
$ %

du:

Using Eq. (56) satisfied by VR
s and VR

r , we get

oVR
r;s

of
¼ oVR

r

of
þ oVR

s

of
þ 2bC0ð0Þ VR

r þ VR
s ' VR

r;s

h i
;

which yields (58). h

The parameter b characterizes the loss of coherence: if b + 1, then the random medium has no influence on the propa-
gation; if b * 1, then scattering is strong. If we assume that b * 1, then the function VR

r ðf;qÞ has the Gaussian form

VR
r ðf;qÞ ’

b*1 pDbfð Þ'd=2e'
1

Dbfjqj
2'Dbf3

3 jrj2 ;

where D is defined by (46).

7. Analysis of the transmitted and reflected waves for slow transverse fluctuations

In the next two sections we discuss important consequences of the effective systems of transport equations for the trans-
mission and reflection operators. We consider first, in this section, the case with slow transverse fluctuations ðlx * r0Þ. As
mentioned in Section 1, the situation analyzed in this paper in which a wave propagates in a random medium, is reflected
by an interface, and then propagates back in the same medium, can be encountered in many situations of interest, and in
particular in optical coherence tomography. The problem has been analyzed in [18–20], where it is assumed that the statis-
tics of the forward- and backward-propagating waves are independent. One of the main goals of the next two sections is to
identify the regimes in which this approximation, the so-called independent approach, is valid. We will stress in this section
that it is important to take into account that the waves propagate in the samemedium in the regime in which the transverse
correlation radius is larger than the beam width, because the predictions of the ‘‘rigorous” approach and the independent
approach are quantitatively different for the reflected intensity profiles and qualitatively very different for the spatial auto-
correlation function.
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We assume that

(a) the reflectivity function of the interface at z ¼ 0 is constant,
(b) the pulse has carrier frequency k0 and it is narrowband in the sense that it satisfies (41),
(c) the input beam spatial profile is Gaussian with radius r0,

bincðt;xÞ ¼ f ðtÞe'ik0te
'jxj2

r2
0 þ cc

(d) the transverse correlation radius lx of the random fluctuations of the medium is larger than r0 and k0r20 / L.

7.1. Statistics of the transmitted wave

As stated in Proposition 1, the transmitted wave petrðs;xÞ in the plane z ¼ 0 converges to the random field ptrðs;xÞ given by
(18) where

"bincðk;xÞ ¼ f̂ ðk' k0Þe
'jxj2

r2
0 ; f̂ ðkÞ ¼

Z
f ðtÞeikt dt:

In a homogeneous medium, the transmitted wave has the Gaussian form

ptr;homoðs;xÞ ¼ T0
e
'id2atan

2L
k0 r

2
0

" #

1þ 4L2

k20r
4
0

" #d=4 exp ' jxj2

r20 1þ 4L2

k20r
4
0

" #þ i
jxj2

r20

2L
k0r20

1þ 4L2

k20r
4
0

2

664

3

775f ðsÞe
'ik0s þ cc;

which exhibits the usual diffractive spreading.
In a random medium the coherent (i.e. mean) transmitted wave is

E½ptrðs; xÞ- ¼ exp '
½C2k0ð0Þ þ C0ð0Þ-k20

8
L

" #
ptr;homoðs;xÞ; ð59Þ

which exhibits a strong damping, but the shape is not affected compared to the homogeneous case. In fact, the wave be-
comes incoherent and its statistical properties are captured by its second-order statistics. The autocorrelation function of
the transmitted wave is

Atrðs; s0;x;x0Þ ¼ E ptrðs;xÞptrðs0; x0Þ½ -;

and it can be expressed in terms of the Wigner distribution as

Atrðs;s0;x;x0Þ ¼ exp '
C2k0 ð0Þk

2
0

4
L

" #
f ðsÞf ðs0Þeik0ðs0'sÞ rd0

ð2pÞ3d=2

Z Z Z
WT L;

xþx0

2
;x00;q;q0

" #
e'iq%ðx'x0 Þe

'2jx00 j2

r2
0

'
jq0 j2 r2

0
2

dx00dqdq0 þ cc:

The results of this subsection so far are valid under the assumptions (a)–(c) and that we now specialize to the slow trans-
versal variation case by assuming also (d). Using the expression (48) of the Wigner distribution, we obtain

Atrðs; s0;x;x0Þ ¼ T2
0 exp½'qTðLÞ-f ðsÞf ðs0Þeik0ðs

0'sÞ r0
rTðLÞ

" #d

exp ' jxj2 þ jx0j2

rTðLÞ2
' jx' x0j2

q2
TðLÞ

þ ivTðLÞ
jxj2 ' jx0j2

r2TðLÞ

 !
þ cc; ð60Þ

where

qTðLÞ ¼
C2k0ð0Þk

2
0

4
L; ð61Þ

vTðLÞ ¼
2L
k0r20

þ k0DL
2

4
; ð62Þ

rTðLÞ ¼ r0 1þ 4L2

k20r40
þ DL3

3r20

 !1=2

; ð63Þ

qTðLÞ ¼ rTðLÞ
k20r

2
0DL
8

þ DL3

6r20
þ k20D

2L4

96

 !'1=2

: ð64Þ
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The factor qTðLÞ given by (61) gives the damping of the autocorrelation function. By comparing with the damping factor of
the coherent wave, one finds that the transmitted wave is essentially incoherent in the situation with C2k0 ð0Þ + C0ð0Þ. The
damping factor (61) expresses the loss due to incoherent backscattering, while the damping factor (59) expresses the loss
due to incoherent forward and backward scattering.

The beam radius rTðLÞ is given by (63). If DLk20r
2
0 + 1, then the random component is negligible and we obtain the usual

formula for the paraxial beam spreading. If DLk20r20 * 1, then the random component is dominant and the beam radius in-
creases as L3=2. This result is well known, it was obtained in the physical literature in Ref. [8] and confirmed mathematically
for instance in Ref. [6].

The correlation radius of the beam qTðLÞ is given by (64). If DLk20r
2
0 + 1, then the correlation radius is much larger than r0,

which simply means that randomness plays no role. If DLk20r20 * 1, then the correlation radius decays as L'1=2. This asymp-
totic result can also be found in [6].

7.2. Statistics of the reflected wave

As stated in Proposition 2, the reflected wave peref ðs;xÞ converges to the random field prefðs; xÞ given by (32). In a homo-
geneous medium, the reflected wave has the Gaussian form

pref;homoðs;xÞ ¼ R0
e
'id2atan

4L
k0 r

2
0

" #

1þ 16L2

k20r
4
0

" #d=4 exp ' jxj2

r20 1þ 16L2

k20r
4
0

" #þ i
jxj2

r20

4L
k0r20

1þ 16L2

k20r
4
0

2

664

3

775f ðsÞe
'ik0s þ cc;

which can be obtained from the expression of the homogeneous transmitted field simply by substituting L by 2L (and T0 by
R0). In a random medium the coherent reflected wave is

E½prefðs; xÞ- ¼ exp '
½C2k0 ð0Þ þ C0ð0Þ-k20

4
L

" #
pref ;homoðs; xÞ; ð65Þ

which exhibits an exponential damping with a damping rate multiplied by two compared to the one of the transmitted wave.
Eq. (65) is valid under the assumptions (a)–(c) and we now specialize to the slow transversal variation case by assuming also
(d). As in the case of the transmitted wave, the reflected wave is essentially incoherent. The autocorrelation function of the
reflected wave is

Arefðs; s0;x;x0Þ ¼ E prefðs;xÞpref ðs0;x0Þ½ -:

Using the expression (53) of the Wigner distribution, we obtain

Arefðs; s0;x;x0Þ ¼ R2
0 exp½'qRðLÞ-f ðsÞf ðs0Þeik0ðs

0'sÞ r0
rRðLÞ

" #d

exp ' jxj2 þ jx0j2

r2RðLÞ
' jx' x0j2

q2
RðLÞ

þ ivRðLÞ
jxj2 ' jx0j2

r2RðLÞ

 !
þ cc; ð66Þ

where

qRðLÞ ¼
C2k0 ð0Þk

2
0

2
L; ð67Þ

vRðLÞ ¼
4L
k0r20

þ 2k0DL2; ð68Þ

rRðLÞ ¼ r0 1þ 16L2

k20r40
þ 4DL3

r20

 !1=2

; ð69Þ

qRðLÞ ¼ rRðLÞ
k20r

2
0DL
2

þ 2DL3

r20

 !'1=2

: ð70Þ

The beam radius rRðLÞ is given by (69). Qualitatively, the beam spreading is of the same type as the one of the transmitted
wave, but quantitatively, it is enhanced compared to a propagation through a randommedium with length 2L (see below for
a quantitative comparison).

The correlation radius of the beam qRðLÞ is given by (70). If DLk20r20 + 1, then the correlation radius is very large, which
simply means that the reflected wave is still coherent. More surprisingly, if DLk20r

2
0 * 1, then the correlation radius goes

to the constant value
ffiffiffi
2

p
r0. This result is in contrast with the one obtained for the transmitted wave, whose correlation ra-

dius decays as L'1=2. This means that the wave looses its coherence as it propagates deep into the random medium, but it
recovers part of it when it is reflected. This fact is related to the special case addressed here in which the lateral variations
of the random medium are very slow. However, this configuration can be encountered for instance when addressing laser
propagation in the atmosphere or acoustic/elastic waves in the earth crust.
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Let us compare these results with the ones that we can obtain using the simple and naive approach in which we assume
that the statistics of the forward- and backward-propagating waves are independent. Within this approach, the intensity
profile and autocorrelation function of the reflected wave in the plane z ¼ L are given by (60) where L should be replaced
by 2L (and the overall multiplicative factor R2

0=T
2
0 should be applied). We therefore see that the beam spreading is slightly

underestimated by the independent approach, which predicts that

rRðLÞjind ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16L2

k20r40
þ 8DL3

3r20

vuut ; ð71Þ

while the last term should have a factor 4 instead of 8/3 according to the exact formula (69). This comes from the fact that
the wave revisits the same perturbations when propagating back in the same randommedium, and it is well known that (for
instance) E½ðBL þ B0

LÞ
2- < E½ð2BLÞ2- for two independent Brownian motions BL and B0

L. The independent approach does not cap-
ture the correct coherence properties of the reflected wave either, since it predicts that the correlation radius should be

qRðLÞjind ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16L2

k20r
4
0
þ 8DL3

3r20

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20r

2
0DL
4 þ 4DL3

3r20
þ k20D

2L4

6

r ’
DLk20r

2
0*1 4

k0
ffiffiffiffiffiffi
DL

p ; ð72Þ

while it should converge to
ffiffiffi
2

p
r0 as DLk20r

2
0 * 1 according to (70), a qualitatively different result.

7.3. The reflected wave for a diffusive mirror

In the previous sections we considered the (standard) case of a specular reflection at the interface z ¼ 0. For applications,
it is important to discuss the case of diffuse backscattering. For instance, in optical coherence tomography, it is diffuse back-
scattering that actually occurs in the case of (skin) tissue [19]. In this subsection, we revisit the theory in the case in which an
inhomogeneous mirror is inserted in the plane z ¼ 0, with the impedance ZMðxÞ, so that the second boundary condition in (9)
now reads

"aeðk;0;xÞ ¼ RMðxÞ"beðk; 0;xÞ;

where RMðxÞ ¼ ðZMðxÞ ' 1Þ=ðZMðxÞ þ 1Þ is the local reflection coefficient of the mirror. In this case, the initial condition at the
reflecting interface z ¼ 0 for the reflection operator is

"Reðk; 0;x;x0Þ ¼ RMðxÞdðx' x0Þ:

We shall assume here that RM is a stationary random process, with mean zero and autocorrelation function

E½RMðxÞRMðx0Þ- ¼ R2
0wðx' x0Þ:

Under these conditions, the initial condition for the Wigner distribution is WRðz ¼ 0;x;x0;q;q0Þ ¼ R2
0dðx' x0Þŵðqþ q0Þ.

Assuming that w is Gaussian:

wðxÞ ¼ e'
jxj2

a2 ; ð73Þ

where a is the correlation radius of the diffusive mirror, we then find by integrating (52) that

WRðz;x;x0;q;q0Þ ¼ R2
0

2p
k2Dzþ 2

a2

 !d=2

d x' x0 ' q' q0

k
z

" #
e
' jqþq0 j2

2k2Dzþ 4
a2 :

By taking the limit a ! 1, we recover the result obtained with a standard mirror with specular reflection.
If the input beam is Gaussian with carrier wavenumber k0 and radius r0, then the autocorrelation function of the reflected

wave has the form (66) where the parameter vRðLÞ, the beam width rRðLÞ, and the correlation radius qRðLÞ are now given by

vRðLÞ ¼
4L
k0

1
r20

þ 1
a2

" #
þ 2k0DL2;

rRðLÞ ¼ r0 1þ 8L2

k20r20

2
r20

þ 1
a2

" #
þ 4DL3

r20

 !1=2

;

qRðLÞ ¼ rRðLÞ
r20
a2

1þ 4L2

k20r40

 !

þ k20r
2
0DL
2

þ 2DL3

r20

 !'1=2

:

The presence of a diffusive mirror in place of a specular mirror affects both the beam radius and the correlation radius. In
particular, the correlation radius is not infinite but equal to a for L ! 0. However, the long-distance behavior is the same
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as in the case of a specular mirror, and we confirm the previous result that the correlation radius is approximately
ffiffiffi
2

p
r0

when random scattering is strong.

7.4. Numerical simulations

One of the most striking results obtained in this section is that, compared to the case where one assumes that the forward
and backward propagations are independent, the fact that the wave visits the same medium in the forward and in the back-
ward propagation induces an increase of the beam width, as can be seen by comparing (69) and (71), and an increase of the
correlation radius, as can be seen by comparing (70) and (72). We have performed numerical simulations to illustrate and
confirm these predictions.

The numerical simulations are performed in the paraxial regime with a one-dimensional transverse space. We assume the
presence of a perfectly reflecting mirror at z ¼ 0 and a Gaussian input beam with carrier wavenumber k0 ¼ 1 and radius
r0 ¼ 4 at z ¼ L ¼ 10. The random medium is modeled by a Gaussian process with Gaussian autocorrelation function with
transverse correlation radius lc ¼ 80, longitudinal correlation length 1, and standard deviation 30=

ffiffiffiffi
p

p
. These parameters

are at the border of our theoretical regime, but allow for easy numerical simulations. Here D ¼ 0:28. We use a split-step Fou-
rier method for discretizing the wave propagation. Finally, we perform a series of 1000 independent simulations to extract
the mean intensity profiles x#E½pref ðxÞ

2- and the autocorrelation function x#E½prefðxÞpref ð0Þ-.
We simulate the backward propagation either with the same random medium as during the forward propagation (Fig. 2),

or with an independent medium (Fig. 3). Then we compare the numerically averaged intensity profiles and autocorrelation
functions with the theoretical formulas obtained above, which gives excellent agreement. In particular, in Fig. 2, one can
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Fig. 2. Mean intensity profiles and autocorrelation functions of the wave at the mirror z ¼ 0 (left) and of the reflected wave at z ¼ L (right). The dotted lines
represent the intensity profile of the input beam. The solid lines are the results of the numerical simulations. The dashed lines are the theoretical formulas
predicted by the rigorous theory that takes into account that the medium is the same in the forward and in the backward propagations. The dot-dashed
lines are the theoretical formulas predicted by the independent approach. Here, in the numerical simulations, the medium is the same in the forward and in
the backward propagations (i.e. it is the real situation). One can check that the numerical results are in agreement with the theoretical formulas predicted
by the rigorous approach.
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check that the correlation radius of the reflected beam is larger than the correlation radius of the wave that reaches the mir-
ror: when propagating back, the wave continues to spread out, but it recovers some coherence.

8. Analysis of the transmitted and reflected waves for rapid transverse fluctuations

In this section we assume the hypotheses (a)–(c) of Section 7, but instead of (d) we assume that the beam width r0 is such
that r0 * lx and k0r0lx / L.

We will show that, in this regime, the independent approach essentially gives the correct answer. The only important
phenomenon not captured by the independent approach is the enhanced backscattering phenomenon, which we discuss
in Section 8.3.

8.1. Second-order statistics of the transmitted wave

The autocorrelation function of the transmitted wave is given by

Atrðs; s0;x;x0Þ ¼ T2
0 exp½'qTðLÞ-f ðsÞf ðs0Þeik0ðs

0'sÞ r20
8pa2l2x

 !d=2 Z
e
'

l2x
2r2

0
sþx'x0

lx

(( ((2' r2
0

8a2 l2x
jsj2

e'is%xþx0
2alx eb

R 1

0
C0ðsfþx'x0

lx
Þ'C0ð0Þ df dsþ cc: ð74Þ

This expression is valid for any values of a and b. If a * 1 and a / r0=lx (equivalently lx + r0 and k0r0lx / L), then we have to
leading order

Atrðs; s0;x;x0Þ ¼ T2
0 exp½'qTðLÞ-f ðsÞf ðs0Þeik0ðs

0'sÞ r20
8pa2l2x

 !d=2 Z
e
'

r2
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8a2 l2x
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e
'jx'x0 j2

2r2
0 e'is%xþx0

2alx eb
R 1

0
C0ðsfþx'x0

lx
Þ'C0ð0Þ dfdsþ cc: ð75Þ

If moreover, b * 1, then we obtain that the autocorrelation function has the Gaussian shape given by (60) with
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Fig. 3. The same as in Fig. 2, but here, in the numerical simulations, the medium is different in the forward and in the backward propagations (i.e. it is an
artificial situation). One can check that the numerical results are in agreement with the theoretical formulas predicted by the independent approach.
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rTðLÞ ¼ r0 1þ
4
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a2l2x
r20

 !1=2

¼ r0 1þ
DL3
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 !1=2

; ð76Þ

qTðLÞ ¼ rTðLÞ
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; ð77Þ

vTðLÞ ¼ bDa ¼ k0DL2

4
: ð78Þ

As noted in Section 5.2, the large b-behavior of the transmitted wave is independent of a. This is why we find the same result
as in Section 7.1 (see (63) with k0r20 * L).

8.2. Second-order statistics of the reflected wave

Using the function VR, we find the following integral representation for the autocorrelation function of the reflected wave:

Arefðs;s0;x;x0Þ ¼R2
0 exp½'qRðLÞ-f ðsÞf ðs0Þeik0ðs

0'sÞ r20
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 !dZ Z Z
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ð79Þ

which holds true for any values of a and b. Using the asymptotic results of Lemma 2 (second item) we get that, in the regime
a * 1:

Arefðs; s0;x;x0Þ ¼ R2
0 exp½'qRðLÞ-f ðsÞf ðs0Þeik0ðs
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This is the form (75) of the autocorrelation function of the transmitted wave, upon the substitution 2a for a and 2b for b.
Therefore, the autocorrelation function of the reflected wave has the form of the autocorrelation function of the transmitted
wave for a propagation distance 2L. This shows that we would have obtained the same result if we had assumed that the
backward propagation was independent of the forward propagation. The independent approach is valid in the regime
a * 1, but not in the regime a + 1 as we have seen in Section 7, nor in the regime a / 1 as can be seen by comparing
the full expressions (74) and (79).

If we consider a diffusive mirror with the autocorrelation wðxÞ as introduced in Section 7.3, then the autocorrelation func-
tion of the reflected field is given by (79) where VR is the solution of the system (54) with the initial condition
VRðf ¼ 0;q; r; sÞ ¼ ðplxÞ'dŵð2q=lxÞ. In the limit a ! 1, we find that the function VRðf;q; r; saÞ for any r–0 converges to

VR
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u
2þrf0ð Þ'C0ð0Þdf0 du: ð81Þ

As a result we get that, in the regime a * 1:
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0 exp½'qRðLÞ-f ðsÞf ðs0Þeik0ðs

0'sÞ r20
32pa2l2x

 !d=2Z
w

lxs
2
þx'x0

" #
e
'

r2
0

32a2 l2x
jsj2'jx'x0 j2

2r2
0

'is%xþx0
4alx e

2b
R 1

0
C0

x'x0
lx

þsf

& '
'C0ð0Þdfdsþcc:

If, additionally, we assume that b * 1 and the function w is Gaussian with radius a as in (73), then the autocorrelation func-
tion of the reflected wave has the Gaussian shape given by (66) in which

rRðLÞ ¼ r0 1þ 8DL3

3r20
þ 8L2

k20a2r20

 !1=2

;

qRðLÞ ¼ rRðLÞ
k20r

2
0DL
4

þ k20D
2L4

6
þ 2DL3

3a2
þ r20
a2

 !'1=2

;

vRðLÞ ¼ k0DL2 þ
4L
k0a2

:

The presence of a diffusive mirror in place of a specular mirror affects both the beam radius and the correlation radius. How-
ever, the large-distance behavior is the same as the case of the specular mirror.

8.3. Enhanced backscattering

The comparison of the autocorrelation function of the reflected wave and that of the transmitted wave for the propaga-
tion distance 2L shows that, in the regime a * 1, there is no coherent effect building up between the forward and backward
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propagations. However, there are some effects in the corrective terms. In this section we show that the reflected intensity
presents a singular picture in a very narrow cone, of angular width of order a'1, around the backscattered direction. This
phenomenon called enhanced backscattering or weak localization is widely discussed in the physical literature [2,16]. It
is here analyzed in the situation with an incoming wave with a narrow wave vector spectrum, or a ‘‘quasi” plane-wave,
and it then arises as a consequence of the multiscale behavior of the regime a* 1 that is exhibited in Lemma 2.

In this section, we assume that the incoming wave has the form

bincðt;xÞ ¼ f ðtÞe'ik0tgincðxÞ þ cc;
and that it is nearly a plane wave, in the sense that ĝincðjÞ is concentrated at some jinc, with an angular width smaller than
a'1. The reflected signal in the direction j0 is

"perefðs; j0Þ ¼
Z

perefðs; xÞe
'ij0 %xdx ¼ 1

2p

Z
"Reðk; L;j0;j

0Þb̂incðk; j0Þe'iks dk:

The moment of the square modulus of "perefðs; j0Þ only involves specific moments of the form (35) (with distinct k). Therefore
this moment converges to the one of the limit process "pref ðs; j0Þ defined as the Fourier transform in x of prefðs;xÞ given by
(32). This means that the mean reflected intensity in the direction j0 satisfies

E½j"perefðs; j0Þj2- !
e!0R2

0 exp½'qRðLÞ-f 2ðsÞI
Rðj0Þ;

IRðj0Þ ¼ 2'dldx

Z
VR 1;

j0 ' j1

2
lx; ðj0 þ j1Þlx;0

& '
jĝincðj1Þj2 dj1:

Using the fact that ĝincðjÞ is concentrated at jinc, we get

IRðj0Þ ¼ PVR 1;
j0 ' jinc

2
lx; ðj0 þ jincÞlx;0

& '
;

where P ¼ R2
02

'dldx
R
jĝincðj1Þj2 dj1.

If random scattering is weak b + 1, then we have the usual specular reflection

IRðj0Þjb+1 ¼ Pd
j0 ' jinc

2
lx

& '
:

In the presence of random scattering, the specular reflection takes the form of a Dirac peak at jinc with intensity
expð'2bC0ð0ÞÞ and a diffusive cone centered at jinc. More exactly, far enough from the backscattered direction 'jinc, the
mean reflected intensity is

IRðj0Þ ¼ PVR
0 1;

j0 ' jinc

2
lx

& '
; for jj0 þ jincjlx * a'1 ¼ Pe'2bC0ð0Þ d

j0 ' jinc

2
lx

& '
þ 1
ð2pÞd

Z
e'ilx

j0'jinc
2 %u e2bC0

u
2ð Þ'1

& '
du

" #
:

In a narrow cone around the backscattered direction, the reflected intensity is locally larger:

IRð'jinc þ a'1jÞ ¼ P VR
0ð1;'jinclxÞ þ VR

jlx ð1;'jinclxÞ ' e'2bC0ð0ÞdðjinclxÞ
) *

: ð82Þ

If we assume, moreover, that b * 1, then we have

IRðj0Þ ¼ ðP2dl'd
x ÞDj'd

spece
'jj0'jinc j

2

Dj2spec ; for jj0 þ jincjlx * a'1; ð83Þ

where the width of the diffusion cone around the specular direction jinc is:

Djspec ¼
2

ffiffiffiffiffiffiffi
Db

p

lx
¼

ffiffiffiffi
D

p
rk0

ffiffiffiffiffiffi
Llz

p

lx
¼

ffiffiffiffiffiffi
DL

p
k0: ð84Þ

On the top of this broad cone, we have an arrow cone of relative maximum equal to 2 centered along the back scattered
direction 'jinc:

IRð'jinc þ a'1jÞ ¼ ðP2dl'd
x ÞDj'd

spece
'jj0'jinc j

2

Dj2spec 1þ e'
Db
3 jjj2 l2x

h i
: ð85Þ

This shows that the width of the enhanced backscattering cone is:

DjEBC ¼
ffiffiffi
3

p

lx
ffiffiffiffiffiffiffi
Db

p
a
¼ 2

ffiffiffi
3

p
lx

ffiffiffiffi
D

p
r

ffiffiffiffiffiffiffiffi
lzL3

q ¼ 2
ffiffiffi
3

p
ffiffiffiffiffiffiffiffi
DL3

p : ð86Þ

Note that the angular width DhEBC ¼ DjEBC=k0 of the cone is proportional to the wavelength, as predicted by physical argu-
ments (diagrammatic expansions) [16].
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If we consider a diffusive mirror with the autocorrelation wðxÞ as introduced in Section 7.3, then the reflected intensity is
still given by (82) in the regime a * 1, with VR

r given by (81). If, additionally, we assume that b * 1 and the function w is
Gaussian with radius a, then we find that the diffusion cone is increased by the presence of the diffusive mirror is (83) with
the width of the diffusion cone around the specular direction jinc given by

Djspec ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dbþ l2x

a2

q

lx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr2k20Llz þ

4l2x
a2

q

lx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DLk20 þ

4
a2

r
:

However, the relative amplitude, the width, and the shape of the enhanced backscattering cone are not affected by the pres-
ence of the diffusive mirror and the mean reflected intensity around the backscattered direction 'jinc is still given by (85).
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Appendix A. Derivation of the transmission model

We want to compute the expectations in (27) and define

IeNðzÞ ¼
YN

j¼1

bT eðkj; z; jj; j
0
jÞ:

Using (14) we find

d
dz

IeNðzÞ ¼
XN

j¼1

YN

l¼1–j

bT eðkl; z;jl;j
0
lÞ
Z
bT eðkj; z;jj; jaÞbLeðkj; z; ja; j

0
jÞdja

-

þ e
2ikjz

e2

Z
bT eðkj; z;jj;jaÞbLeðkj; z; ja; jbÞ bReðkj; z;jb;j

0
jÞdja djb

.
: ðA:1Þ

We next apply the diffusion approximation to get transport equations for the moments, see [9] for background material on
and related applications of the diffusion approximation. Observe that the random coefficients are rapidly fluctuating in view
of (15). Those coefficients that are of order e'1 are centered and fluctuate on the scale e2, moreover they are assumed to be
rapidly mixing, giving a white-noise scaling situation. We can thus apply diffusion approximation results to obtain equations
for the moments E½IeN- in the limit e ! 0:

INðzÞ ¼ lim
e!0

E½IeNðzÞ-:

We obtain from (A.1) that IN solves a system of integro-differential equations

d
dz

INðzÞ ¼ ' i
2

XN

j¼1

jj0
jj
2

kj

 !
INðzÞ '

1
8

X2

j¼1

IN;jðzÞ; ðA:2Þ

with the initial conditions INðk1; . . . ; kN; j1; . . . ; jN; j0
1; . . . ; j

0
N; z ¼ 0Þ ¼ TN

0 dðj1 ' j0
1Þ % % % dðjN ' j0

NÞ. The first term to the right-
hand side of (A.2) is the contributions of the deterministic diffractive terms in (15). We next discuss the particular forms
of the source terms IN;j. We have

IN;1ðzÞ ¼
XN

j¼1

k2j C0ð0Þ
 !

INðzÞ þ
1

ð2pÞd
XN

j¼1

XN

l¼1–j

kjkl
Z
bC0ðjÞINðz; j0

l ' j; j0
j þ jÞdj;

which comes from the interaction of the first term in the right-hand side of (A.1) with the dynamics for bT e as given in (14)
and where we only show the shifted arguments for IN . The second term in the right-hand side of (A.1) interacts with the
dynamics for bRe as given in (13) and gives

IN;2ðzÞ ¼
XN

j¼1

k2j C2kj ð0Þ
 !

INðzÞ:

We can conclude that

d
dz

INðzÞ ¼ ' i
2

XN

j¼1

jj0
jj
2

kj

 !
INðzÞ '

1
8

XN

j¼1

k2j ðC0ð0Þ þ C2kj ð0ÞÞ
 !

INðzÞ '
1

8ð2pÞd
XN

j¼1

XN

l¼1–j

kjkl
Z
bC0ðjÞINðz;j0

l ' j;j0
j þ jÞdj:
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Using in particular the relation

E

Z Z Z za

0

Z zb

0
kðsa;jaÞkðsb;jbÞ dBsa ðjaÞdBsb ðjbÞdja djb

$ %
¼
Z Z minðza ;zbÞ

0
E½kðs;jÞkðs;'jÞ-ð2pÞdbC0ðjÞdsdj;

we can then verify that

INðzÞ ¼ E
YN

j¼1

bT ðkj; z;jj;j
0
jÞ

" #

;

when the right-hand side expectation is takenwith respect to the Itô–Schrödingermodel for the transmission operator in (28).

Appendix B. Derivation of wave pulse reflection model

We now want to compute the expectations in (35) and define

JeNðzÞ ¼
YN

j¼1

bReðkj; z;jj;j
0
jÞ:

Using (13) we find

d
dz

JeNðzÞ ¼
XN

j¼1

YN

l¼1–j

bReðkl; z;jl; j
0
lÞ e'

2ikjz

e2 bLeðkj; z;jj;j
0
jÞ þ e

2ikj z

e2

Z Z
bReðkj; z; jj;jaÞbLeðkj; z;ja;jbÞ bReðkj; z;jb;j

0
jÞdja djb

-

þ
Z
bLeðkj; z;jj;jaÞ bReðkj; z; ja; j

0
jÞdja þ

Z
bReðkj; z;jj;jaÞbLeðkj; z; ja; j

0
jÞdja

.
: ðB:1Þ

We again apply diffusion approximations to get transport equations for the moments. We obtain from (B.1) that the limiting
moments JN:

JNðzÞ ¼ lim
e!0

E½JeNðzÞ-;

solve a system of integro-differential equations

d
dz

JNðzÞ ¼ ' i
2

XN

j¼1

jjjj2 þ jj0
jj
2

kj

 !
JNðzÞ '

1
4

X5

j¼1

J N;jðzÞ; ðB:2Þ

with the initial conditions JNðk1; . . . ; kN; j1; . . . ; jN; j0
1; . . . ; j

0
N; z ¼ 0Þ ¼ RN

0 dðj1 ' j0
1Þ % % % dðjN ' j0

NÞ. The first term to the right-
hand side of (B.2) is the contributions of the deterministic diffractive terms in (15). We next discuss the particular forms
of the source terms J N;j. We consider first the interaction of the first two terms in the curly brackets in (B.1), this gives
the contribution

J N;1ðzÞ ¼
XN

j¼1

k2j C2kj ð0Þ

 !

JNðzÞ:

We consider next the interaction of the last two terms in the curly brackets in (B.1). The interaction of these terms with
themselves gives the contribution

J N;2ðzÞ ¼
XN

j¼1

k2j C0ð0Þ
 !

JNðzÞ: ðB:3Þ

The cross interaction of these terms gives the contribution

J N;3ðzÞ ¼
1

ð2pÞd
XN

j¼1

k2j

Z
bC0ðjÞJNðz; jj ' j; j0

j ' jÞdj: ðB:4Þ

We consider finally the cross interaction of the terms in the first line of (B.1), the terms bReðkl; z; jl; j
0
lÞ, with those in the curly

brackets. The cross interaction with the third term in the curly brackets gives the contribution

J N;4ðzÞ ¼
1

2ð2pÞd
XN

j¼1

XN

l¼1–j

kjkl
Z
bC0ðjÞ JNðz;jj ' j;j0

l ' jÞ þ JNðz; jj ' j;jl þ jÞ
+ ,

dj: ðB:5Þ

The cross interaction with the fourth term in the curly brackets gives the contribution

J N;5ðzÞ ¼
1

2ð2pÞd
XN

j¼1

XN

l¼1–j

kjkl
Z
bC0ðjÞ JNðz;j0

j ' j; jl ' jÞ þ JNðz;j0
j ' j;j0

l þ jÞ
& '

dj: ðB:6Þ
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We conclude that JNðzÞ solves

d
dz

JNðzÞ ¼ ' i
2

XN

j¼1

jjjj2 þ jj0
jj
2

kj

 !
JNðzÞ '

1
4

XN

j¼1

k2j C0ð0Þ þ k2j C2kj ð0Þ
 !

JNðzÞ '
1

4ð2pÞd
XN

j¼1

k2j

Z
bC0ðjÞJNðz;jj ' j;j0

j ' jÞdj

' 1
8ð2pÞd

XN

j¼1

XN

l¼1–j

kjkl
Z
bC0ðjÞ JNðz; jj ' j; j0

l ' jÞ þ JNðz; j0
j ' j; jl ' jÞ þ JNðz; jj ' j; jl þ jÞ

&

þ JNðz; j0
j ' j; j0

l þ jÞ
'
dj;

and can then verify that

JNðzÞ ¼ E
YN

j¼1

bRðkj; z;jj;j
0
jÞ

" #
;

when the right-hand side expectation is taken with respect to the Itô–Schrödinger model for the reflection operator in (36).
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